博客
关于我
递推算法——例题详解
阅读量:788 次
发布时间:2019-03-24

本文共 1445 字,大约阅读时间需要 4 分钟。

递推算法的本质

递推算法的本质是通过将复杂问题分解为多个较小的问题并建立彼此之间的数字关系,将问题一步步简化求解。在递推过程中,我们通过已知部分问题的结果,逐步推导出未知部分的问题解,类似于从下而上解决问题的方式,使得问题变得更加清晰和可控。

例一:数塔问题(倒推法)

数塔问题是递推算法的经典例子。问题描述为:在一个由数字构成的数塔中,从顶部到底部找出一条路径,使得路径上的数字之和最大。解决这个问题的常用方法是倒推法,即从上层向下层推导。

分析:将问题从上而下分解显然并不直观,因此我们选择从下而上进行分析。通过观察我们可以发现,每一层的数字之和等于下一层中与其相邻的两个数字中较大的那个加上当前层的数字。

最终,从最底层到最顶层,我们逐步计算每层的值,从而得到最大和路径。

代码实现:

#include 
#include
#include
#include
using namespace std;int main() { int n, i, j; char a[101][101]; cin >> n; for (i = 1; i <= n; ++i) { for (j = 1; j <= i; ++j) { cin >> a[i][j]; } } for (i = n - 1; i >= 1; --i) { for (j = 1; j <= i; ++j) { if (a[i + 1][j] >= a[i + 1][j + 1]) { a[i][j] += a[i + 1][j]; } else { a[i][j] += a[i + 1][j + 1]; } } } cout << a[1][1] << endl; return 0;}

例二:斐波那契数列的非递归实现

斐波那契数列是一个经典的递推序列,其定义为:f(0)=1,f(1)=1,f(n)=f(n-1)+f(n-2)。通过递推式,我们可以逐步计算出后续的数列项。

分析:观察数列的结构,我们可以发现每一项都等于前两项之和。通过非递归的方式,我们可以通过循环实现,将前一项和前前一项的值相加,逐步生成数列。

代码实现:

#include 
#include
#include
#include
using namespace std;int main() { int f0 = 1, f1 = 1, f2 = 2; int n; cin >> n; for (int i = 3; i <= n; ++i) { f2 = f0 + f1; f0 = f1; f1 = f2; } cout << f2; return 0;}

其他相关类型的问题

类似的递推类型问题还包括经典的蓝桥杯题目“奶牛问题”等,其中涉及递归和非递归的不同实现方法。

转载地址:http://phrkk.baihongyu.com/

你可能感兴趣的文章
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>